

Utilization of Mega Weather Data for Preventive Maintenance of Asphalt Pavements: An Overview

Hanqi Liu, Ph.D., Sharjah Research Academy Mufid Samarai, Ph.D., Sharjah Research Academy Waleed Zeiada, Ph.D., University of Sharjah Ghazi G. Al-Khateeb, Ph.D., University of Sharjah Rulla Saad, Sharjah Research Academy

November 19th, 2019

Outline

- Introduction to Preventive Maintenance
- Selection of Appropriate Preventive Maintenance Treatment
- Determination of Right Maintenance Time
- Conclusions

Pavement Maintenance

Pavement maintenance is used to prolong the pavement service life

Rutting (High Temperature)

Fatigue Cracking (Intermediate Temperature)

Thermal Cracking (Low Temperature)

Pavement Maintenance

- Pavement maintenance is used to prolong the pavement service life
- Three types of pavement maintenance
 - > Preventive maintenance
 - Corrective maintenance
 - > Emergency maintenance

Pavement Maintenance

- Pavement maintenance is used to prolong the pavement service life
- Three types of pavement maintenance

Preventive Maintenance	• Implemented when the asphalt pavement stays in relatively good condition
Corrective Maintenance	• Performed while the pavement needs to be repaired
Emergency Maintenance	• Performed during an emergency situation

Preventive Maintenance: Definition

A planned strategy of cost-effective treatments to an existing roadway system and its appurtenances that preserves the system, retards future deterioration, and maintains or improves the functional condition of the system (without significantly increasing structural capacity)

Preventive Maintenance: Effect

Corrective Maintenance: Effect

Preventive Maintenance: Concerns

Determination of right maintenance time

Selection of appropriate preventive maintenance treatment

Outline

- Introduction to Preventive Maintenance
- Selection of Appropriate Preventive Maintenance Treatment
- Determination of Right Maintenance Time
- Conclusions

Preventative Maintenance Treatment Methods

ents in China	Involved Pavement Thickness (mm)	Maintenance Level	Treatment Methods				
t Pavem vince, (0–15	Low	Fog Seal, Micro-surfacing, Chip Seal				
phalt g Pro	10–30	Medium	Ultra-thin Friction Course				
y As gdong	Isy A 20–40	High	Thin Hot Mix Asphalt Overlay				
Highwa Guang	20–50	Very High	Mill and Overlay, Hot In-place Recycling, Central Plant Hot Recycling				

Note: Crack seal and crack filling are used before preventive maintenance as pre-repair of an old pavement

- Four maintenance treatment methods were investigated in the experiment design
 - Crack seal
 - > Chip seal
 - > Slurry seal
 - > Thin hot mix asphalt (HMA) overlay

Four maintenance treatment methods were investigated in the experiment design

Crack Seal	• Place specialized materials into working cracks (greater than about 2 mm) to prevent entry of water or other incompressible substance
Chip Seal	• Spray a pavement surface with asphalt (generally emulsified) and immediately cover the surface with aggregate and then roll
Slurry Seal	• Use a mixture consisting of water, slow setting emulsified asphalt, well-graded fine aggregate and mineral filler to fill cracks and seal areas
Thin HMA Overlay	• Place plant-mixed asphalt mixtures, which can be dense- graded, open-graded or gap-graded, in depths of 2–4 cm over asphalt pavements

- Four maintenance treatment methods were investigated in the experiment design
- Five design factors were considered
 - > Moisture
 - > Temperature
 - Subgrade type
 - > Traffic loading
 - > Existing pavement condition

- Four maintenance treatment methods were investigated in the experiment design
- Five design factors were considered
 - > Moisture
 - > Temperature
 - Subgrade type
 - > Traffic loading
 - Existing pavement condition
- Performance of pavement sections using preventive maintenance treatments was compared with that of the control sections with no treatment

SPS–3 Experiment: Suggested Treatments

Distress S T		Temperature		Precipitation		Subgrade		Traffic		Pavement Condition		
	Treatment	Freeze	No Freeze	Dry	Wet	Fine	Coarse	Low	High	Good	Fair	Poor
Fatigue Cracking	First Choice	СН	СН	СН	СН	СН	СН	СН	СН	СН	None	ТН
	Second Choice	ТН	-	_	TH	-	ТН	_	TH	_	_	СН
Rutting	First Choice	ТН	ТН	ТН	ТН	ТН	ТН	TH	ТН	ТН	ТН	ТН
	Second Choice	СН	-	СН	-	-	-	-	-	-	-	-
Roughness	First Choice	ТН	None	None	None	TH	ТН	None	тн	None	None	ТН

- Chip seal and thin HMA overlay were generally superior when compared with slurry seal and crack seal
- In terms of fatigue cracking, chip seal was the only suggested treatment for pavements in no-freeze zones, dry climates, pavements with fine subgrade, low traffic conditions, and pavements initially in good condition

SPS–3 Experiment: Suggested Treatments

Distress Suggested Treatment	Temperature		Precipitation		Subgrade		Traffic		Pavement Condition			
	Freeze	No Freeze	Dry	Wet	Fine	Coarse	Low	High	Good	Fair	Poor	
Fatigue	First Choice	СН	СН	СН	СН	СН	СН	СН	СН	СН	None	ТН
cracking	Second Choice	ТН	_	_	ТН	-	ТН	_	ТН	_	_	СН
D44 ¹	First Choice	ТН	ТН	ТН	ТН	ТН	ТН	ТН	ТН	ТН	ТН	ТН
Rutting	Second Choice	СН	-	СН	_	-	-	-	_	-	_	-
Roughness	First Choice	тн	None	None	None	ТН	ТН	None	тн	None	None	тн

- As for rutting, thin HMA overlay was effective under any design circumstance and outperformed the other three treatments
- Thin HMA overlay was found to be the only treatment that was effective in delaying the progression of roughness, which can be used in freeze zones, pavements with high traffic conditions, and pavements initially in poor condition

Historical weather data of Sharjah International Airport from 1977 to 2004

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Temperature (°C)												
Mean daily max.	24.4	25.7	29.0	34.2	39.1	41.3	42.4	42.2	40.1	36.3	31.1	26.5
Mean daily min.	12.1	13.0	15.5	18.4	22.2	25.0	27.9	27.8	24.6	21.0	16.9	13.8
Extreme max.	32.5	35.4	42.5	44.6	46.4	49.2	47.8	48.2	48.7	43.0	37.3	33.9
Extreme min.	3.4	2.5	5.8	10.9	13.0	17.8	21.7	22.2	18.4	12.3	8.1	4.9
Relative humidity (%)												
Mean daily max.	90	90	88	82	76	82	80	80	87	89	87	90
Mean daily min.	41	38	33	25	21	23	26	27	26	28	33	40
Rainfall (mm)												
Monthly mean	17.9	31.9	38.0	7.9	1.0	0.0	3.5	0.0	0.4	2.6	4.9	21.0
Monthly extreme	97.8	142.9	156.4	43.7	20.6	TR	53.1	0.6	9.2	63.4	41.6	146.5
Highest 24 hr. max.	62.7	115.5	76.7	36.6	14.4	TR	35.2	0.6	5.5	62.6	41.6	60.7
Mean No. of rain days	6.0	5.9	8.1	2.5	0.4	0.1	0.7	0.4	0.1	0.2	1.3	4.6

Note: TR means rainfall was less than 1 mm.

Historical weather data of Sharjah International Airport from 1977 to 2004: Temperature

Historical weather data of Sharjah International Airport from 1977 to 2004: Rainfall

Suggested Treatments: Sharjah

Distress Suggested Treatment	Suggested	Temperature		Precipitation		Subgrade		Traffic		Pavement Condition		
	Freeze	No Freeze	Dry	Wet	Fine	Coarse	Low	High	Good	Fair	Poor	
Fatigue	First Choice	СН	СН	СН	СН	СН	СН	СН	СН	СН	None	ТН
cracking	Second Choice	ТН	-	-	TH	-	ТН	-	ТН	-	-	СН
Dutting	First Choice	ТН	ТН	ТН	тн	тн	ТН	TH	ТН	ТН	ТН	ТН
Kutting	Second Choice	СН	-	СН	-	-	-	-	-	-	_	_
Roughness	First Choice	тн	None	None	None	тн	ТН	None	ТН	None	None	ТН

- The suggested preventive maintenance for fatigue cracking should be chip seal
- The suggested preventive maintenance for rutting should be thin HMA overlay
- None of the four treatment methods are effective in delaying the progression of roughness in Sharjah

Outline

- Introduction to Preventive Maintenance
- Selection of Appropriate Preventive Maintenance Treatment
- Determination of Right Maintenance Time
- Conclusions

Determination of Right Maintenance Time

Demanded Maintenance Time

- Six pavement performance indicators are adopted to evaluate the need for preventive maintenance
 - Pavement structural strength index (PSSI)
 - Pavement condition index (PCI)
 - Sideway force coefficient (SFC)
 - > International roughness index (IRI)
 - Rutting depth (RD)
 - Cracking rate (CR)

Demanded Maintenance Time

- Six pavement performance indicators are adopted to evaluate the need for preventive maintenance
- Other pavement maintenance technologies should be utilized instead of preventive maintenance when
 - Pavement structural strength index (PSSI) < 80</p>
 - > Pavement condition index (PCI) < 80
 - > Sideway force coefficient (SFC) < 40
 - > International roughness index (IRI) > 3.5 m/km
 - > Rutting depth (RD) > 25 mm
 - Cracking rate (CR) > 50 m/1000m²

Demanded Maintenance Time

Pavement Performance Indicator	Critical Range	Need for Preventive Maintenance					
	>54	No need or low maintenance level					
SFC	48–54	Medium maintenance level					
	40–48	High maintenance level					
IRI (m/km)	<1.6	No need or low maintenance level					
	1.6–2.3	Medium maintenance level					
	2.3–3.5	High maintenance level					
	<5	No need or low maintenance level					
RD (mm)	5–15	Medium maintenance level					
	15–25	High maintenance level					
	<5	Regular maintenance or low maintenance level					
CR (m/1000m ²)	5–20	Medium maintenance level					
	20–50	High maintenance level					

Optimum Maintenance Time

- Life-cycle cost analysis (LCCA) is widely used to evaluate the cost-effectiveness of maintenance activities
 - Expected service life: Determined as the time at which a performance indicator reaches the threshold
 - Performance curve: Each performance indicator is plotted versus time
 - Effectiveness: Calculated as difference between the performance curve area without preventive maintenance and that after preventive maintenance

Optimum Maintenance Time

Life-cycle cost analysis (LCCA) is widely used to evaluate the cost-effectiveness of maintenance activities

Hanqi Liu, Ph.D., Postdoctoral Research Associate

Optimum Maintenance Time

Life-cycle cost analysis (LCCA) is widely used to evaluate the cost-effectiveness of maintenance activities

Outline

- Introduction to Preventive Maintenance
- Selection of Appropriate Preventive Maintenance Treatment
- Determination of Right Maintenance Time
- Conclusions

Conclusions

- Preventive maintenance is considered as the most costeffective way to extend the pavement service life
- The suggested preventive maintenance for fatigue cracking should be chip seal and that for rutting should be thin HMA overlay in Sharjah
- As for demanded maintenance time, four pavement performance indicators, including SFC, IRI, RD and CR, are employed to determine the exact maintenance level.
- The optimum maintenance time can be determined based on life-cycle cost analysis

בותם

äö

UNIVERSITY OF SHA

Hanqi Liu, Ph.D., Postdoctoral Research Associate